首页 | 本学科首页   官方微博 | 高级检索  
     


Droplet coalescence in the shear flow of model emulsions
Authors:Adam Al-Mulla  Rakesh K. Gupta
Affiliation:(1) Department of Chemical Engineering West Virginia University P.O. Box 6102 Morgantown, WV 26506, USA e-mail: gupta@cemr.wvu.edu, US
Abstract:During the flow of an emulsion, droplets of the dispersed phase can deform, break up, coalesce or migrate to other regions within the flow field. Understanding these different processes is relevant to morphology development in immiscible polymer blends. Here, emulsions of castor oil in silicone oil were employed to study shear-induced coalescence alone; the conditions chosen were such that drop breakup and drop migration did not occur. A cone-and-plate device and tubes of varying length were used to examine the influence of the average shear rate, the time of shearing, concentration of the dispersed phase, and temperature on the average droplet size. It was found that the extent of “demixing” was not influenced by the spatially non-homogeneous nature of flow in a tube; results correlated very well with the average shear rate. On the other hand, coalescence was significant even when the concentration of the dispersed phase was as low as 0.5%, and it became more important as the concentration was increased. Other results were that the extent of coalescence could be promoted by lowering the shear rate. In quantitative terms, it was found that available coalescence theory gave the correct order of magnitude for the average steady-state droplet size as a function of the imposed shear rate, but the actual variation of drop size with shear rate was gentler than that predicted by theory. An unusual observation was that, under some circumstances, the droplets did not coalesce but simply stuck to each other and maintained their separate identity. Received: 25 March 1999/Accepted: 22 July 1999
Keywords:Model emulsions  Polymer blends  Demixing in shear flow  Droplet coalescence  Droplet aggregation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号