首页 | 本学科首页   官方微博 | 高级检索  
     


Organic p-i-n solar cells
Authors:B. Maennig  J. Drechsel  D. Gebeyehu  P. Simon  F. Kozlowski  A. Werner  F. Li  S. Grundmann  S. Sonntag  M. Koch  K. Leo  M. Pfeiffer  H. Hoppe  D. Meissner  N.S. Sariciftci  I. Riedel  V. Dyakonov  J. Parisi
Affiliation:(1) Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden, Germany;(2) Max Planck Institute for Chemical Physics of Solids, Dresden, 01187 Dresden, Germany;(3) Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University, 4040 Linz, Austria;(4) Energy and Semiconductor Research Laboratory, Institute of Physics, University of Oldenburg, 26111 Oldenburg, Germany
Abstract:We introduce a p-i-n-type heterojunction architecture for organic solar cells where the active region is sandwiched between two doped wide-gap layers. The term p-i-n means here a layer sequence in the form p-doped layer, intrinsic layer and n-doped layer. The doping is realized by controlled co-evaporation using organic dopants and leads to conductivities of 10-4 to 10-5 S/cm in the p- and n-doped wide-gap layers, respectively. The photoactive layer is formed by a mixture of phthalocyanine zinc (ZnPc) and the fullerene C60 and shows mainly amorphous morphology. As a first step towards p-i-n structures, we show the advantage of using wide-gap layers in M-i-p-type diodes (metal layer–intrinsic layer–p-doped layer). The solar cells exhibit a maximum external quantum efficiency of 40% between 630-nm and 700-nm wavelength. With the help of an optical multilayer model, we optimize the optical properties of the solar cells by placing the active region at the maximum of the optical field distribution. The results of the model are largely confirmed by the experimental findings. For an optically optimized device, we find an internal quantum efficiency of around 82% under short-circuit conditions. Adding a layer of 10-nm thickness of the red material N,Nprime-dimethylperylene-3,4:9,10-dicarboximide (Me-PTCDI) to the active region, a power-conversion efficiency of 1.9% for a single cell is obtained. Such optically thin cells with high internal quantum efficiency are an important step towards high-efficiency tandem cells. First tandem cells which are not yet optimized already show 2.4% power-conversion efficiency under simulated AM 1.5 illumination of 125 mW/cm2 . PACS 73.61.Ph; 78.30.Jw; 89.30.Cc
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号