首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Room-temperature regioselective C-H/olefin coupling of aromatic ketones using an activated ruthenium catalyst with a carbonyl ligand and structural elucidation of key intermediates
Authors:Kakiuchi Fumitoshi  Kochi Takuya  Mizushima Eiichiro  Murai Shinji
Institution:Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan. kakiuchi@chem.keio.ac.jp
Abstract:Mechanistic studies of the ruthenium-catalyzed reaction of aromatic ketones with olefins are presented. Treatment of the original catalyst, RuH(2)(CO)(PPh(3))(3), with trimethylvinylsilane at 90 °C for 1-1.5 h afforded an activated ruthenium catalyst, Ru(o-C(6)H(4)PPh(2))(H)(CO)(PPh(3))(2), as a mixture of four geometric isomers. The activated complex showed high catalytic activity for C-H/olefin coupling, and the reaction of 2'-methylacetophenone with trimethylvinylsilane at room temperature for 48 h gave the corresponding ortho-alkylation product in 99% isolated yield. The activated catalyst was thermally robust and showed excellent catalytic activity under refluxing toluene conditions. (1)H and (31)P NMR studies of the C-H/olefin coupling at room temperature suggested that an ortho-ruthenated complex, P,P'-cis-C,H-cis-Ru(2'-(6'-MeC(6)H(4)C(O)Me))(H)(CO)(PPh(3))(2), participated in the reaction as a key intermediate. Isotope labeling studies using acetophenone-d(5) indicated that the rate-limiting step was the C-C bond formation, not the C-H bond cleavage, and that each step prior to the reductive elimination was reversible. The rate of C-H/olefin coupling was found to exhibit pseudo first-order kinetics and to show first-order dependence on the ruthenium complex concentration.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号