首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oriented protein adsorption to gold nanoparticles through a genetically encodable binding motif
Authors:Reed Alison M W  Metallo Steven J
Institution:Chemistry Department, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States.
Abstract:Simple, stable, and specific methods for immobilizing proteins on gold surfaces are needed for the development of applications that rely on the oriented attachment of proteins to gold surfaces. We report a direct, stable, genetically encodable method for the oriented chemisorption of proteins to gold nanoparticles (Au NPs) through the tetracysteine motif (C-C-P-G-C-C) while simultaneously suppressing protein physisorption. Mutants of ubiquitin (Ub) and enhanced green fluorescent protein (eGFP) containing the tetracysteine motif were produced and displayed stronger adsorption to the NPs than did native proteins. An eGFP mutant with a dicysteine motif (G-C-C) did not show a significant improvement in binding to Au NPs compared to that of the wild-type protein. The binding of the proteins to Au NPs of various sizes (14, 18, 28, and 39 nm) was explored. The small Ub tetracysteine mutant stabilized several sizes of Au NPs, and the eGFP tetracysteine mutant clearly had the strongest chemisorption to the 18 nm NPs. The control of binding orientation for proteins bearing a tetracysteine motif was demonstrated through the enhanced specific binding of protein-NP conjugates to immobilized targets.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号