首页 | 本学科首页   官方微博 | 高级检索  
     


A scenario aggregation algorithm for the solution of stochastic dynamic minimax problems
Abstract:In this paper, we present a scenario aggregation algorithm for the solution of the dynamic minimax problem in stochastic programming. We consider the case where the joint probability distribution has a known finite support. The algorithm applies the Alternating Direction of Multipliers Method on a reformulation of the minimax problem using a double duality framework. The problem is solved by decomposition into scenario sub-problems, which are deterministic multi-period problems. Convergence properties are deduced from the Alternating Direction of Multipliers. The resulting algorithm can be seen as an extension of Rockafellar and Wets Progressive Hedging algorithm to the dynamic minimax context.
Keywords:Stochastic games  saddle point  Stochastic programming  convex analysis  progressive hedging
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号