首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Possibilistic sequential decision making
Institution:1. LARODEC, Institut Supérieur de Gestion Tunis, Université de Tunis, Tunisia;2. IRIT, University of Paul Sabatier, Toulouse, France
Abstract:When the information about uncertainty cannot be quantified in a simple, probabilistic way, the topic of possibilistic decision theory is often a natural one to consider. The development of possibilistic decision theory has lead to the proposition a series of possibilistic criteria, namely: optimistic and pessimistic possibilistic qualitative criteria 7], possibilistic likely dominance 2], 9], binary possibilistic utility 11] and possibilistic Choquet integrals 24]. This paper focuses on sequential decision making in possibilistic decision trees. It proposes a theoretical study on the complexity of the problem of finding an optimal strategy depending on the monotonicity property of the optimization criteria – when the criterion is transitive, this property indeed allows a polytime solving of the problem by Dynamic Programming. We show that most possibilistic decision criteria, but possibilistic Choquet integrals, satisfy monotonicity and that the corresponding optimization problems can be solved in polynomial time by Dynamic Programming. Concerning the possibilistic likely dominance criteria which is quasi-transitive but not fully transitive, we propose an extended version of Dynamic Programming which remains polynomial in the size of the decision tree. We also show that for the particular case of possibilistic Choquet integrals, the problem of finding an optimal strategy is NP-hard. It can be solved by a Branch and Bound algorithm. Experiments show that even not necessarily optimal, the strategies built by Dynamic Programming are generally very good.
Keywords:Decision analysis  Dynamic Programming  Branch and Bound  Possibility theory  Choquet integrals  Decision tree
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号