Using possibilistic logic for modeling qualitative decision: Answer Set Programming algorithms |
| |
Affiliation: | 1. Department of Computing, Goldsmiths College London, London SE14 6NW, United Kingdom;2. Institut de Recherche en Informatique Toulouse (IRIT), Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France |
| |
Abstract: | A qualitative approach to decision making under uncertainty has been proposed in the setting of possibility theory, which is based on the assumption that levels of certainty and levels of priority (for expressing preferences) are commensurate. In this setting, pessimistic and optimistic decision criteria have been formally justified. This approach has been transposed into possibilistic logic in which the available knowledge is described by formulas which are more or less certainly true and the goals are described in a separate prioritized base. This paper adapts the possibilistic logic handling of qualitative decision making under uncertainty in the Answer Set Programming (ASP) setting. We show how weighted beliefs and prioritized preferences belonging to two separate knowledge bases can be handled in ASP by modeling qualitative decision making in terms of abductive logic programming where (uncertain) knowledge about the world and prioritized preferences are encoded as possibilistic definite logic programs and possibilistic literals respectively. We provide ASP-based and possibilistic ASP-based algorithms for calculating optimal decisions and utility values according to the possibilistic decision criteria. We describe a prototype implementing the algorithms proposed on top of different ASP solvers and we discuss the complexity of the different implementations. |
| |
Keywords: | Qualitative decision under uncertainty Answer set programming Possibilistic answer set programming |
本文献已被 ScienceDirect 等数据库收录! |
|