首页 | 本学科首页   官方微博 | 高级检索  
     


Fermentation performance assessment of a genomically integrated xylose-utilizing recombinant of Zymomonas mobilis 39676
Authors:Lawford  Hugh G.  Rousseau  Joyce D.
Affiliation:(1) Bio-engineering Laboratory, Department of Biochemistry, University of Toronto, M5S 1A8 Toronto, Ontario, Canada
Abstract:In pH-controlled batch fermentations with pure sugar synthetic hardwood hemicellulose (1% [w/v] glucose and 4% xylose) and corn stover hydrolysate (8% glucose and 3.5% xylose) lacking acetic acid, the xyloseutilizing, tetracycline (Tc)-sensitive, genomically integrated variant of Zymomonas mobilis ATCC 39676 (designated strain C25) exhibited growth and fermentation performance that was inferior to National Renewable Energy Laboratory's first-generation, Tc-resistant, plasmid-bearing Zymomonas recombinants. With C25, xylose fermentation following glucose exhaustion wasmarkellyslower, and the ethanol yield (based on sugars consumed) was lower, owing primarily to an increase in lactic acid formation. There was an apparent increased sensitivity to acetic acid inhibition with C25 compared with recombinants 39676:pZB4L, CP4:pZB5, and ZM4:pZB5. However, strain C25 performed well in continous ferm entation with nutrient-rich synthetic corn stover medium over the dilution range 0.03–0.06/h, with a maximum provess ethanol yield at D=0.03/h of 0.46 g/g and a maximum ethanol productivity of 3 g/(L·h). With 0.35% (w/v) acetic acid in the medium, the process yield at D=0.04/h dropped to 0.32 g/g, and the maximum productivity decreased by 50% to 1.5 g/(L·h). Under the same operating conditions, rec Zm Zm 4:pZB5 performed better; however, the medium contained 20 mg/L of Tc to constantly maintain selective pressure. The absence of any need for antibiotics and antiboitic resistance genes makes the chromosomal integrant C25 more com patible with current regulatory specifications for biocatalysts in large-scale commercial operations.
Keywords:Recombinant Zymomonas C25  genomic integrant  xylose  ethanol  biomass hydrolysate  acetate inhibition
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号