首页 | 本学科首页   官方微博 | 高级检索  
     


Orbital currents and charge density waves in a generalized Hubbard ladder
Authors:J.O. Fjæ  restad,J.B. Marston
Affiliation:a Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
b Department of Physics, University of Queensland, Brisbane, Qld 4072, Australia
c Department of Physics, Brown University, Providence, RI 02912, USA
d Institute for Theoretical Physics C, RWTH Aachen, D-52056 Aachen, Germany
Abstract:We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping δ away from half-filling, finite-system density-matrix renormalization-group (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/δ and 1/δ, respectively, corresponding to ordering wavevectors 2kF and 4kF for the currents and densities, where 2kF = π (1 − δ). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/δ, the DMRG results are consistent with a true long-range order scenario for the currents and densities.
Keywords:71.10.Fd   71.10.Hf   71.10.Pm   71.30.+h
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号