首页 | 本学科首页   官方微博 | 高级检索  
     


Minimum Disparity Estimation in Linear Regression Models: Distribution and Efficiency
Authors:Ro Jin Pak  Ayanendranath Basu
Affiliation:(1) Department of Statistics, Taejon University, Taejon, 300-716, Korea;(2) Applied Statistics Unit, Indian Statistical Institute, 203 B. T. Road, Calcutta, 700 035, India
Abstract:This paper deals with the minimum disparity estimation in linear regression models. The estimators are defined as statistical quantities which minimize the blended weight Hellinger distance between a weighted kernel density estimator of errors and a smoothed model density of errors. It is shown that the estimators of the regression parameters are asymptotic normally distributed and efficient at the model if the weights of the density estimators are appropriately chosen.
Keywords:Asymptotic efficiency  blended weight Hellinger distance  kernel density estimator  linear regression model
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号