首页 | 本学科首页   官方微博 | 高级检索  
     


Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids
Authors:N. E. Zhukhlistova  V. V. Balaev  A. V. Lyashenko  A. A. Lashkov
Affiliation:1. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskii pr. 59, Moscow, 119333, Russia
Abstract:Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号