Abstract: | Abstract— Ab initio quantum mechanical calculations on ethyl bacteriochlorophyllide-a (Et-BChl-a) and ethyl bacteriopheophorbide-a (Et-BPheo-a) are presented, including self-consistent-field (SCF) molecular orbital studies on the ground states using the molecular fragment procedure, and configuration interaction (CI) calculations on the low-lying singlet and triplet states and absorption spectra. A characterization and comparison of many of the higher-lying molecular orbitals obtained from the SCF studies is presented. The estimated first ionization potentials are 5.66 and 5.97 eV for Et-BChl-a and Et-BPheo-a, respectively. Excited state calculations show that the visible spectrum of both molecules consists of an intense, y-polarized S1← S0 transition and a weakly-allowed, x-polarized S2← S0 transition. Both S1 and S2 states are 1(π, π*) in character, and are described by a four-orbital model. Transitions to the remaining calculated states, S3-S12, appear in the Soret region of the spectrum of both molecules. However, only transitions to S9(‘x’), S10(‘x’) and S11(‘y’) of Et-BChl-a, and S7(‘x’) and S10(‘y’) of Et-BPheo-a are of high intensity. The composition of the high intensity Soret states is 1(π, π*) and strongly “four-orbital” in nature. The lowest triplet state, T1, is predicted to lie 9752 cm-1 and 7880 cm-1 above S0 for Et-BPheo-a and Et-BChl-a, respectively. In each molecule T2 and S1 are nearly degenerate, suggesting a favorable pathway for intersystem crossing. Calculated Tn← T1 transitions indicate that the y-polarized T12← T1 transition in Et-BChl-a corresponds to the observed intense 24,400 cm-1 absorption in the triplet-triplet spectrum of BChl-a. A similar type spectrum is also predicted for BPheo-a. |