首页 | 本学科首页   官方微博 | 高级检索  
     


A model for the structure of MCM-41 incorporating surface roughness
Authors:Sonwane Chandrashekhar G  Jones Christopher W  Ludovice Peter J
Affiliation:School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, USA.
Abstract:The surface area of MCM-41 mesoporous silica, estimated by several models in the literature, is significantly less than the value derived from BET analysis of nitrogen adsorption at 77.4 K. In the past, the difference has been attributed to several reasons including the errors involved in the BET analysis of the multilayer-capillary condensation region and the heterogeneity of the walls. In the present work, we present an alternate model of MCM-41 based on molecular simulations that gives surface area values that are in closer agreement to those determined by experiment. The model incorporates bulk heterogeneity of the material, surface hydroxyls, and most importantly, physical deformations or indentations of the pore surface. The model predicts small-angle X-ray diffraction (XRD) and wide-angle X-ray scattering (WAXS) results that are consistent with experimental data as well as surface areas and pore volumes that compare favorably with published experimental results. The simulation results are consistent with the hypothesis that the interstitial space in MCM-41 is relatively amorphous despite the regular arrangement of the mesopores. The surface roughness associated with the amorphous structure increases the surface area beyond the nominal value produced by assuming smooth cylindrical pores.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号