Pure and mixed films of a nitrostilbene derivative at the air-water interface, Langmuir-Blodgett multilayer fabrication, and optical characterization |
| |
Authors: | Martín Santiago Cea Pilar Pera Gorka Haro Marta López M Carmen |
| |
Affiliation: | Departamento de Química Orgánica-Química Física, Facultad de Ciencias, Plaza San Francisco, Ciudad Universitaria, 50009 Zaragoza, Spain. |
| |
Abstract: | This paper reports the preparation and characterization of pure Langmuir and Langmuir-Blodgett (LB) films of a stilbene derivative containing two alkyl chains, namely 4-dioctadecylamino-4'-nitrostilbene. Mixed films incorporating docosanoic acid and the stilbene derivative are also studied. Brewster angle microscopy (BAM) analysis has revealed the existence of randomly oriented three-dimensional (3D) aggregates, spontaneously formed immediately after the spreading process of the stilbene derivative onto the water surface. These 3D aggregates coexist with a Langmuir film that shows the typical gas, liquid, and solid-like phases in the surface pressure and surface potential vs area per molecule isotherms, indicative of an average preferential orientation of the stilbene compound at the air-water interface, and a gradual molecular arrangement into a defined structure upon compression. A blue shift of 55 nm of the reflection spectrum of the Langmuir film with respect to the spectrum of a chloroform solution of the nitrostilbene indicates that two-dimensional (2D) H-aggregates are formed at the air-water interface. The monolayers are transferred undisturbed onto solid substrates with atomic force microscopy (AFM) revealing that the one layer LB films are constituted by a monolayer of the stilbene derivative together with some 3D aggregates. When the nitrostilbene compound is blended with docosanoic acid, the 3D aggregation is avoided in the Langmuir and Langmuir-Blodgett films, but does not limit the formation of 2D H-aggregates, desirable for second-order nonlinear optical response in the blue domain. The AFM images of the mixed LB films show that they are formed by a docosanoic acid monolayer and, on the top of it, a bilayer of the stilbene derivative. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|