首页 | 本学科首页   官方微博 | 高级检索  
     


On the correlation between bond-length change and vibrational frequency shift in hydrogen-bonded complexes: a computational study of Y...HCl dimers (Y = N2, CO, BF)
Authors:McDowell Sean A C  Buckingham A David
Affiliation:Department of Chemistry, Lensfield Road, University of Cambridge, Cambridge CB2 1EW, England. sacm1@cam.ac.uk
Abstract:The H-Cl bond-length change and the harmonic vibrational frequency shift of the H-Cl stretch on formation of the linear isoelectronic Y...H-Cl complexes (Y = N(2), CO, BF) have been determined by ab initio computations at different levels of theory. These shifts are in agreement with predictions from a model based on perturbation theory and involving the first and second derivatives of the interaction energy with respect to displacement of the H-Cl bond length from its equilibrium value in the isolated monomer. At the highest level of theory, blue shifts were obtained for BF...HCl and CO...HCl, while red shifts were obtained for FB...HCl, OC...HCl, and N(2)...HCl. These vibrational characteristics are rationalized by considering the balance between the interaction energy derivatives obtained from the perturbative model. The widely believed correlation between the bond-length change and the sign of the frequency shift obtained on complexation is discussed and found to be unreliable.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号