首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Perceptual learning following changes in the frequency-to-electrode assignment with the Nucleus-22 cochlear implant
Authors:Fu Qian-Jie  Shannon Robert V  Galvin John J
Institution:Department of Auditory Implants and Perception, House Ear Institute, Los Angeles, California 90057, USA. qfu@hei.org
Abstract:The goal of the present study was to investigate the time course of adaptation by experienced cochlear implant users to a shifted frequency-to-electrode assignment in their speech processors. Speech recognition performance of three Nucleus-22 cochlear implant users was measured over a 3-month period, during which the implant listeners continuously wore "experimental" speech processors that were purposely shifted by 2-4 mm in terms of the frequency-to-electrode assignment relative to their normal processor. Baseline speech performance was measured with each subject's clinically assigned speech processor just prior to implementation of the experimental processor. Baseline speech performance was measured again after the 3-month test period, immediately following the reinstallation of the clinically assigned processor settings. Speech performance with the experimental processor was measured four times during the first week, and weekly thereafter over the 3-month period. Results showed that the experimental processor produced significantly lower performance on all measures of speech recognition immediately following implementation. Over the 3-month test period, consonant and HINT sentence recognition with the experimental processors gradually approached a performance level comparable to but still significantly below the baseline and postexperiment measures made with the clinically assigned processor. However, vowel and TIMIT sentence recognition with the experimental processors remained far below the level of the baseline measures even at the end of the 3-month experimental period. There was no significant change in performance with the clinically assigned processor before or after fitting with the experimental processor. The results suggest that a long-time exposure to a new pattern of stimulation may not be able to compensate for the deficit in performance caused by a 2-4-mm shift in the tonotopic location of stimulation, at least within a 3-month period.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号