首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic evolution in coarse-grained molecular dynamics simulations of polyethylene melts
Authors:Depa Praveen K  Maranas Janna K
Affiliation:Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Abstract:We test a coarse-grained model assigned based on united atom simulations of C50 polyethylene to seven chain lengths ranging from C76 to C300. The prior model accurately reproduced static and dynamic properties. For the dynamics, the coarse-grained time evolution was scaled by a constant value [t=alphatCG] predictable based on the difference in intermolecular interactions. In this contribution, we show that both static and dynamic observables have continued accuracy when using the C50 coarse-grained force field for chains representing up to 300 united atoms. Pair distribution functions for the longer chain systems are unaltered, and the chain dimensions present the expected N0.5 scaling. To assess dynamic properties, we compare diffusion coefficients to experimental values and united atom simulations, assign the entanglement length using various methods, examine the applicability of the Rouse model as a function of N, and compare tube diameters extracted using a primitive path analysis to experimental values. These results show that the coarse-grained model accurately reproduces dynamic properties over a range of chain lengths, including systems that are entangled.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号