首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compartment-specific q-space analysis of diffusion-weighted data from isolated rhesus optic and sciatic nerves
Authors:Ronen Itamar  Kim Dae-Shik
Institution:Center for Biomedical Imaging, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA. itamar@bu.edu
Abstract:We investigated compartment-specific water diffusion properties in two widely structurally different isolated bovine nerves. Sciatic and optic nerves were immersed in saline containing Gd-DTPA(2+). Consequently, T(1) became non-monoexponential and fit well to a biexponential function. q-Space diffusion data were collected for each component. In the sciatic nerve, the slow-decaying component (T(1s)) was considerably more restricted and directional than the fast-decaying component (T(1f)). In the optic nerve, fractional anisotropy of both components was comparable and similar to that of the total H(2)O signal. The root mean square of the displacement distribution functions of T(1s) correlated well with the widely different axonal diameters of both nerves. Possibly, the source of T(1s) is the intra-axonal compartment and that of T(1f) is associated with the inter-axonal space. The compartment specificity of the method shown makes it useful for the investigation of the contribution of each nerve compartment to diffusion tensor imaging measurements and other diffusion-based methods.
Keywords:Diffusion-weighted MR  Nerves  q-space  Tissue compartments
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号