首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shape transition of semi-flexible macromolecules confined in channel and cavity
Authors:P Cifra and T Bleha
Institution:(1) Analytical and Biophysical Environmental Chemistry (CABE), Department of Inorganic, Analytical and Applied Chemistry, Sciences II, University of Geneva, 30 quai E. Ansermet, 1211 Geneva 4, Switzerland;
Abstract:Stiff macromolecules entrapped in channels or in spherical cavities undergo a shape transition on increasing confinement as shown by our investigation using molecular simulations. In channels this weak-to-strong confinement transition leads to extended conformations without the hairpin-like back-folding. In cavities, on decrease of cavity radius, the semi-flexible chain in a disordered state starts to self-organize into the torus. As a common rule for both types of confinement the transition to the ordered structures is observed when the radius of cavity and cylindrical channel reaches the lower bound of macromolecular flexibility given by the average typical radius of curvature of the chain, which is approximately equal to the persistence length of the macromolecular chain. This simple geometric rule finds its application in various confinement situations of stiff bio-macromolecules either in micro-channel experiments or in real biophysical situation, such as DNA in viral capsid.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号