首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Proteomic biomarkers in plasma that differentiate rapid and slow decline in lung function in adult cigarette smokers with chronic obstructive pulmonary disease (COPD)
Authors:Gaurav S J B Rana  Timothy P York  Jeffery S Edmiston  Barbara K Zedler  Joel G Pounds  Joshua N Adkins  Richard D Smith  Zaigang Liu  Guoya Li  Bradley T Webb  Edward L Murrelle  Jason W Flora
Institution:1. Health Sciences, Altria Client Services, Research Development & Engineering, 601 E. Jackson Street, Richmond, VA, 23219, USA
2. Departments of Human and Molecular Genetics and Pharmacy, Institute for Biomarker Discovery and Personalized Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, 23219, USA
3. Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
Abstract:Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of morbidity and mortality in the United States and cigarette smoking is a primary determinant of the disease. COPD is characterized by chronic airflow limitation as measured by the forced expiratory volume in one second (FEV1). In this study, the plasma proteomes of 38 middle-aged or older adult smokers with mild to moderate COPD, with FEV1 decline characterized as either rapid (RPD, n?=?20) or slow or absent (SLW, n?=?18), were interrogated using a comprehensive high-throughput proteomic approach, the accurate mass and time (AMT) tag technology. This technology is based upon a putative mass and time tag database (PMT), high-resolution LC separations and high mass accuracy measurements using FT-ICR MS with a 9.4-T magnetic field. The peptide and protein data were analyzed using three statistical approaches to address ambiguities related to the high proportion of missing data inherent to proteomic analysis. The RPD and SLW groups were differentiated by 55 peptides which mapped to 33 unique proteins. Twelve of the proteins have known roles in the complement or coagulation cascade and, despite an inability to adjust for some factors known to affect lung function decline, suggest potential mechanistic biomarkers associated with the rate of lung function decline in COPD. Whether these proteins are the cause or result of accelerated decline will require further research.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号