首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Additivity rules using similarity models for chemical reactivity: calculation and interpretation of electrofugality and nucleofugality
Authors:Bentley T William
Institution:Department of Chemistry, University of Wales, Swansea, Singleton Park, Swansea SA2 8PP, Wales, UK. t.w.bentley@swan.ac.uk
Abstract:A recently proposed, multi-parameter correlation: log k (25 degrees C)=s(f) (Ef + Nf), where Ef is electrofugality and Nf is nucleofugality, for the substituent and solvent effects on the rate constants for solvolyses of benzhydryl and substituted benzhydryl substrates, is re-evaluated. A new formula (Ef=log k (RCl/EtOH/25 degrees C) -1.87), where RCl/EtOH refers to ethanolysis of chlorides, reproduces published values of Ef satisfactorily, avoids multi-parameter optimisations and provides additional values of Ef. From the formula for Ef, it is shown that the term (sfxEf) is compatible with the Hammett-Brown (rho+sigma+) equation for substituent effects. However, the previously published values of N(f) do not accurately account for solvent and leaving group effects (e.g. nucleofuge Cl or X), even for benzhydryl solvolyses; alternatively, if the more exact, two-parameter term, (sfxNf) is used, calculated effects are less accurate. A new formula (Nf=6.14 + log k(BX/any solvent/25 degrees C)), where BX refers to solvolysis of the parent benzhydryl as electrofuge, defines improved Nf values for benzhydryl substrates. The new formulae for Ef and Nf are consistent with an assumption that sf=1.00(,) and so improved correlations for benzhydryl substrates can be obtained from the additive formula: log k(RX/any solvent/25 degrees C)=(Ef + Nf). Possible extensions of this approach are also discussed.
Keywords:kinetics  leaving group effects  nucleophilic substitution  solvent effects  substituent effects
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号