首页 | 本学科首页   官方微博 | 高级检索  
     


Optimization of dynamic mechanical response of a composite plate using multi-field coupling with thermal constraints
Affiliation:1. Department of Systems and Industrial Engineering,University of Arizona, Tucson, AZ 85721, United States;2. Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, United States
Abstract:We consider the problem of optimizing the dynamic response of a mechanically loaded, rectangular, electrically conductive anisotropic composite plate by applying an electromagnetic field, which exploits the electro-magneto-mechanical field coupling phenomenon. An important aspect of the formulated nonlinear partial differential equation (PDE)-constrained optimization model is the presence of a thermal constraint that prevents polymer matrix degradation in the composite material due to Joule heating produced by the electromagnetic field. A black-box optimization approach based on the active set algorithm is employed. A system of governing PDEs is solved using a series of sequential numerical procedures that includes the method of lines, Newmark time-stepping scheme, quasilinearization, integration of two-point boundary-value problems, and a superposition method followed by orthonormalization. Implementation in hyper-dual arithmetics facilitated automatic differentiation and computation of the gradient. Optimization results show that application of an electromagnetic field with optimal characteristics enables one to significantly reduce the amplitude of the plate vibrations while controlling for Joule heating.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号