首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantifying the uncertainty in a hyperelastic soft tissue model with stochastic parameters
Institution:1. Institute of Computational Engineering, University of Luxembourg, 6 Avenue de la Fonte, Esch-sur-Alzette 4362, Luxembourg;2. Team MIMESIS, Inria, Strasbourg, France;3. Institute of Research and Development Duy Tan University, K7/25 Quang Trung, Danang, Vietnam
Abstract:We present a simple open-source semi-intrusive computational method to propagate uncertainties through hyperelastic models of soft tissues. The proposed method is up to two orders of magnitude faster than the standard Monte Carlo method. The material model of interest can be altered by adjusting few lines of (FEniCS) code. The method is able to (1) provide the user with statistical confidence intervals on quantities of practical interest, such as the displacement of a tumour or target site in an organ; (2) quantify the sensitivity of the response of the organ to the associated parameters of the material model. We exercise the approach on the determination of a confidence interval on the motion of a target in the brain. We also show that for the boundary conditions under consideration five parameters of the Ogden–Holzapfel-like model have negligible influence on the displacement of the target zone compared to the three most influential parameters. The benchmark problems and all associated data are made available as supplementary material.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号