首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Support vector regression based metamodeling for seismic reliability analysis of structures
Institution:Department of Civil Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 India
Abstract:The present study deals with support vector regression-based metamodeling approach for efficient seismic reliability analysis of structure. Various metamodeling approaches e.g. response surface method, Kriging interpolation, artificial neural network, etc. are usually adopted to overcome computational challenge of simulation based seismic reliability analysis. However, the approximation capability of such empirical risk minimization principal-based metamodeling approach is largely affected by number of training samples. The support vector regression based on the principle of structural risk minimization has revealed improved response approximation ability using small sample learning. The approach is explored here for improved estimate of seismic reliability of structure in the framework of Monte Carlo Simulation technique. The parameters necessary to construct the metamodel are obtained by a simple effective search algorithm by solving an optimization sub-problem to minimize the mean square error obtained by cross-validation method. The simulation technique is readily applied by random selection of metamodel to implicitly consider record to record variations of earthquake. Without additional computational burden, the approach avoids a prior distribution assumption about approximated structural response unlike commonly used dual response surface method. The effectiveness of the proposed approach compared to the usual polynomial response surface and neural network based metamodels is numerically demonstrated.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号