首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Flow-induced and mechanical stability of cantilever carbon nanotubes subjected to an axial compressive load
Institution:Department of Mechanical Engineering, Sirjan University of Technology, 78137-33385 Sirjan, Islamic Republic of Iran
Abstract:In the present study, a modified nonlocal elasticity theory is used for flutter and divergence analyses of the cantilever carbon nanotubes (CNTs) conveying fluid. The CNT is embedded in viscoelastic foundation and is subjected to an axial compressive load acting at the free end. An extreme high-order governing equation as well as higher-order boundary conditions is developed using Hamilton's principle for vibration and stability analysis of the CNT. The numerical solution for flutter and divergence velocities is computed using the extended Galerkin method. The validity of the present analysis is confirmed by comparing with molecular dynamics simulation (MDS) and numerical solutions available in the literature. In the numerical results, the effects of nonlocal parameter, surface effects, viscoelastic foundation and compressive axial load on the stability boundaries of the system are investigated. The results show that the stability boundaries of the CNT are strongly dependent on the small scale coefficient and surface effects.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号