首页 | 本学科首页   官方微博 | 高级检索  
     


The oxidation of oleate in submicron aqueous salt aerosols: evidence of a surface process
Authors:McNeill V Faye  Wolfe Glenn M  Thornton Joel A
Affiliation:Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, USA.
Abstract:We have studied the oxidation of submicron aqueous aerosols consisting of internal mixtures of sodium oleate (oleic acid proxy), sodium dodecyl sulfate, and inorganic salts by O3, NO3/N2O5, and OH. Experiments were performed using an aerosol flow tube and a continuous flow photochemical reaction chamber coupled to a chemical ionization mass spectrometer (CIMS). The CIMS was fitted with a heated inlet for volatilization and detection of organics in the particle phase simultaneously with the gas phase. A differential mobility analyzer/condensation particle counter was used for determining aerosol size distributions. The oxidation of oleate by O3 follows Langmuir-Hinshelwood kinetics, with gammaO3 approximately 10(-5) calculated from the observed loss rate of oleate in the particle phase. The best fit Langmuir-Hinshelwood parameters are kImax=0.05+/-0.01 s-1 and KO3=4(+/-3)x10(-14) cm3molec-1. These parameters showed no dependence on the ionic composition of the aerosols or on the presence of alkyl surfactants. Several ozone oxidation products were observed to be particle-bound at ambient temperature, including nonanoic acid. We observed efficient processing of oleate by OH (0.1
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号