首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigation of magnetostrictive/piezoelectric multilayer composite with a giant zero-biased magnetoelectric effect
Authors:Caijiang Lu  Ping Li  Yumei Wen  Aichao Yang  Wei He  Jitao Zhang  Jin Yang  Jing Wen  Yong Zhu  Miao Yu
Institution:1. Research Center of Sensors and Instruments, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, People’s Republic of China
Abstract:In this paper, we investigate the resonance magnetoelectric (ME) effect in the middle supported multilayer composites consisting of high-permeability Fe-based nanocrystalline soft magnetic alloy Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB), Nickel (Ni), and piezoelectric Pb(Zr1?x Ti x )O3 (PZT). The coupling effect between positive magnetostrictive FeCuNbSiB and negative magnetostrictive Ni results in the build-in magnetic bias due to their different magnetic permeability and coercivity. As a result, a giant resonance ME voltage coefficient (α ME,r ) at zero DC magnetic bias field (H dc) and multi-peaks of α ME,r for FeCuNbSiB/Ni/PZT/Ni/FeCuNbSiB composite are observed. The experimental results show that the giant zero-biased α ME,r strongly depends on the thickness of FeCuNbSiB ribbon. The maximum zero-biased α ME,r is up to 86 V/cm?Oe for FeCuNbSiB/Ni/PZT/Ni/FeCuNbSiB with four-layer FeCuNbSiB ribbons, which is ~500 times higher than that of the previously reported NKNLS-NZF/Ni/NKNLS-NZF trilayer composite. Compared with the peak α ME,r and the optimum H dc of Ni/PZT/Ni composite, the largest peak α ME,r of FeCuNbSiB/Ni/PZT/Ni/FeCuNbSiB composite with four-layer FeCuNbSiB ribbons increases ~185 %, and the optimum H dc decreases ~300 Oe, respectively. Based on the nonlinear magnetostrictive constitutive relation and the magnetoelectric equivalent circuit, a theoretical model of α ME,r versus H dc is built under free boundary conditions. Calculated zero-biased α ME,r and α ME,r versus H dc are in good agreement with the experimental data. This laminate composite shows promising applications for high-sensitivity power-free magnetic field sensors, zero-biased ME transducers and small-size energy harvesters.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号