首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports
Authors:Svec Frantisek
Institution:Department of Chemistry, University of California, Berkeley, CA, USA. svec@berkeley.edu
Abstract:This review summarizes the recent contributions to the rapidly growing area of immobilized enzymes employing both silica and synthetic polymer-based monoliths as supports. Focus is mainly on immobilized proteolytic enzyme reactors designed for studies in proteomics. Porous monoliths emerged first as a new class of stationary phases for HPLC in the early 1990s. Soon thereafter, they were also used as supports for immobilization of proteins and preparation of both stationary phases for bioaffinity chromatography and enzymatic reactors. Organic polymer-based monoliths are typically prepared using a simple molding process carried out within the confines of a "mold" such as chromatographic column or capillary. Polymerization of a mixture comprising monomers, initiator, and porogenic solvent affords macroporous materials. In contrast, silica-based monoliths are first formed as a rigid rod from tetraalkoxysilane in the presence of PEG and subsequently encased with a plastic tube. Both types of monolith feature large through-pores that enable a rapid flow-through. Since all the solutions must flow through the monolith, the convection considerably accelerates mass transfer within the monolith. As a result, reactors including enzyme immobilized on monolithic support exhibit much higher activity compared to the reactions in solution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号