首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enantioselective biotransformations of racemic and meso pyrrolidine-2,5-dicarboxamides and their application in organic synthesis
Authors:Chen Peng  Gao Ming  Wang De-Xian  Zhao Liang  Wang Mei-Xiang
Institution:Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Abstract:In this paper, we report the amidase-catalyzed hydrolysis of pyrrolidine-2,5-dicarboxamides and their application in organic synthesis. Catalyzed by Rhodococcus erythropolis AJ270, an amidase containing microbial whole cell catalyst, racemic trans-pyrrolidine-2,5-carboxamide was kinetically resolved into (2S,5S)-pyrrolidine-2,5-dicarboxamide and (2R,5R)-5-carbamoylpyrrolidine-2-carboxylic acid in high yields and excellent enantioselectivity. Biocatalytic desymmetrization of meso cis-pyrrolidinedicarboxamide afforded enantiomerically pure (2R,5S)-5-carbamoylpyrrolidine-2-carboxylic acid in an almost quantitative yield. In both kinetic resolution and desymmetrization, the amidase always exhibited excellent 2R-enantioselectivity, although its catalytic efficiency was influenced dramatically by the steric effect of the substituent on the nitrogen atom of pyrrolidine ring. The synthetic potential of biotransformation was demonstrated by the scalable preparation of (2R,5R)- and (2R,5S)-5-carbamoylpyrrolidine-2-carboxylic acids and their conversions to aza-nucleoside analogues and druglike pyrroline-fused diazepin-11(5H)-one compounds.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号