首页 | 本学科首页   官方微博 | 高级检索  
     


Lifetime regulation of the charge-separated state in DNA by modulating the oxidation potential of guanine in DNA through hydrogen bonding
Authors:Kawai Kiyohiko  Osakada Yasuko  Takada Tadao  Fujitsuka Mamoru  Majima Tetsuro
Affiliation:Contribution from The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan. kiyohiko@sanken.osaka-u.ac.jp
Abstract:A series of naphthalimide (NI)- and 5-bromocytosine ((br)C)-modified oligodeoxynucleotides (ODNs) were prepared, and their lifetimes of the charge-separated states during the photosensitized one-electron oxidation of DNA were measured. Various lifetimes of the charge-separated states were observed depending on the sequence and the incorporation sites of (br)C, and the oxidation potential of G in the (br)C:G base-pair relative to that of G in the C:G base-pair and in the GGG sequence was determined by comparing the lifetimes of the charge-separated states. The change in the cytosine C5 hydrogen to bromine resulted in a 24 mV increase in the oxidation potential of G in the (br)C:G base-pair as compared to that of G in the C:G base-pair, the value of which is comparable to a 58 mV decrease in the oxidation potential of G in the GGG sequence. These results clearly demonstrate that hole transfer in DNA can be controlled through hydrogen bonding by introducing a substituent on the cytosine.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号