首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Head-column field-amplified sample stacking in presence of siphoning. Application to capillary electrophoresis-electrospray ionization mass spectrometry of opioids in urine
Authors:Wey A B  Thormann W
Institution:Department of Clinical Pharmacology, University of Berne, Switzerland.
Abstract:Capillary electrophoresis (CE) with head-column field-amplified sample stacking (FASS) in presence of a water plug inserted at the capillary tip is a robust approach providing a more than 1000-fold sensitivity enhancement when applied to low-conductivity samples that are analyzed in an integrated instrument. Employing modular systems comprising a small hydrodynamic buffer flow (siphoning) towards the capillary end and featuring UV absorption or electrospray ionization mass spectrometric (MS) detection, insertion of a water plug is demonstrated to deteriorate the performance of head-column FASS or making it unfunctional. Electroinjection in the absence of the water plug can be employed instead and is shown to provide a ng/ml sensitivity when applied to low conductivity samples. With some suction of sample into the capillary during electroinjection, contamination of the sample vial with buffer is thereby largely avoided. Electroinjection applied to the CE-ion trap MS-MS and MS-MS-MS analysis of twofold diluted urines, urinary solid-phase extracts and urinary liquid-liquid extracts is shown to provide much improved sensitivity compared to hydrodynamic injection of these samples. With electroinjection from diluted urine and urinary solid-phase extracts, the presence of free opioids and their glucuronic acid conjugates can be unambiguously confirmed in urines that were collected after single-dose administration of small amounts of opioids (tested with about 7 mg codeine and 25 mg dihydrocodeine, respectively). Thus, CE-multiple MS with direct electroinjection of opioids from untreated urines could prove to become a rapid and simple approach for unambiguous urinary testing of drug abuse. Procedures leading to the reduction of siphoning in modular CE setups are briefly discussed as well.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号