首页 | 本学科首页   官方微博 | 高级检索  
     


Pressure dependence of peroxynitrite reactions. Support for a radical mechanism
Authors:Coddington J W  Wherland S  Hurst J K
Affiliation:Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA.
Abstract:Activation volumes (delta V++) have been determined for several reactions of peroxynitrite using the stopped-flow technique. Spontaneous decomposition of ONOOH to NO3- in 0.15 M phosphate, pH 4.5, gave delta V++ = 6.0 +/- 0.7 and 14 +/- 1.0 cm3 mol-1 in the presence of 53 microM and 5 mM nitrite ion, respectively. One-electron oxidations of Mo(CN)8(4-) and Fe(CN)6(4-), which are first order in peroxynitrite and zero order in metal complex, gave delta V++ = 10 +/- 1 and 11 +/- 1 cm3 mol-1, respectively, at pH 7.2. The limiting yields of oxidized metal complex were found to decrease from 61 to 30% of the initially added peroxynitrite for Mo(CN)8(3-) and from 78 to 47% for Fe(CN)6(3-) when the pressure was increased from 0.1 to 140 MPa. The bimolecular reaction between CO2 and ONOO- was determined by monitoring the oxidation of Fe(CN)6(4-) by peroxynitrite in bicarbonate-containing 0.15 M phosphate, pH 7.2, for which delta V++ = -22 +/- 4 cm3 mol-1. The Fe(CN)6(3-) yield decreased by approximately 20% upon increasing the pressure from atmospheric to 80 MPa. Oxidation of Ni(cyclam)2+ by peroxynitrite, which is first order in each reactant, was characterized by delta V++ = -7.1 +/- 2 cm3 mol-1, and the thermal activation parameters delta H++ = 4.2 +/- 0.1 kcal mol-1 and delta S++ = -24 +/- 1 cal mol-1 K-1 in 0.15 M phosphate, pH 7.2. These results are discussed within the context of the radical cage hypothesis for peroxynitrite reactivity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号