The importance of dihydrogen complexes HnGe(H2)+ (n=0,1) to the chemistry of cationic germanium hydrides: advanced theoretical and mass spectrometric analysis |
| |
Authors: | Jackson P Sändig N Diefenbach M Schröder D Schwarz H Srinivas R |
| |
Affiliation: | Mass Spectrometry Unit, Research School of Chemistry, Australian National University, Canberra ACT. jackson@rsc.anu.edu.au |
| |
Abstract: | Investigations of [Ge,Hn]-/0/- (n = 2,3) have been performed using a four-sector mass spectrometer. The results reveal that the complexes HnGe(H2)+ (n = 0,1) play an important role in the unimolecular dissociation of the metastable cations. Theoretical calculations support the experimental observations in most instances, and the established view that the global minimum of [Ge,H2]+ is an inserted structure may need reexamination; CCSD(T,full)/cc-pVTZ//CCSD(T)/6-311 ++ G(d,p) and B3LYP/cc-pVTZ studies of three low-lying cation states (2A1 HGeH+, 2B2 Ge(H2)+ and 2B1 Ge(H2)+) indicate a very small energy difference (ca. 4 kcal mol(-1)) between 2A1 HGeH+ and 2B2 Ge(H2)+; B3LYP favours the ion-molecule complex, whereas coupled-cluster calculations favour the inserted structure for the global minimum. Single-point multireference (MR) averaged coupled-pair functional and MR-configuration interaction calculations give conflicting results regarding the global minimum. We also present theoretical evidence indicating that the orbital-crossing point implicated in the spin-allowed metastable dissociation HGeH+* --> Ge(H2)+* --> Ge+ + H2 lies above the H-loss asymptote. Thus, a quantum-mechanical tunneling mechanism is invoked to explain the preponderance of the H2-loss signal for the metastable ion. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|