Abstract: | Experimental investigations were carried out to explore the convective heat transfer in micro pin-fins with different aspect ratios, and the influence of heating load on Nusselt numbers in micro pin-fins with liquid water as working fluid were investigated. The mechanism of convective heat transfer in micro pin-fins at different heating load were studied by 3-D numerical investigations, and the relationships of thermal physical properties change, the end wall effect and axial thermal conduction with Nu numbers in micro pin-fins were analysed. It was found that the thickness of boundary layer was decreased as much as 33.3 % attributed to the destructive effect of thermal physical properties change, and convective heat transfer in the micro pin-fin channel was more than 20 % enhanced by the flow disturbance caused by the increase of temperature difference. The discrepancy of Nu in micro pin-fin channel with different aspect ratios reached 34.59 %, and this discrepancy was reduced by the increase of heating load. The maximum value of impact factors of dynamic viscosity and thermal conductivity on the Nu in micro-pin-fins reached 25.02 and 7.68 %, respectively. |