首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Short wave pass and long wave pass dichroic coating at 45° on zinc selenide substrate for dual band thermal imager
Authors:AS Upadhyaya  A Ghosh  PK Bandyopadhyay
Institution:aInstrument Research and Development Establishment, Dehra Dun 248 008, India
Abstract:In dual band thermal imager dichroic coating plays a vital role in separating 3–5 μm and 7.5–10.5 μm wavelength region for observing better image quality from two different channels. In this work a study has been carried out on the design and fabrication of short and long wave pass dichroic coating at 45° on zinc selenide flat substrate. These dichroic coated optics can be used to separate 3–5 μm (in reflection or transmission channel) and 7.5–10.5 μm (in transmission or reflection channel) wavelength region. An inhomogeneous refractive index profile which is a polynomial of 5th order was considered to design the high and low wave pass dichroic coating on zinc selenide substrate. The inhomogeneous profile was then approximated with five steps from substrate to air medium. These steps were then converted in terms of durable coating materials of six and seven layer stack for short and long wave pass dichroic coating respectively. The coating material combination used was germanium as high index material and IR-F625 as low index material. Result achieved for short wave pass dichroic filter was 94% average transmission in 3–5 μm region and 95% average reflection in 7.5–10.5 μm region. Similarly, result achieved for long wave pass dichroic filter was 95% average reflection in 3–5 μm region and 94% average transmission in 7.5–10.5 μm.
Keywords:Dual band thermal imager  Dichroic coating  Short wave pass dichroic coating  Long wave pass dichroic coating  Inhomogeneous refractive index profile
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号