首页 | 本学科首页   官方微博 | 高级检索  
     


Projection of Si 1s photoexcited orbitals into resonant Auger electron spectra in KLL decays of Si(CH3)4 and SiF4
Authors:Suzuki I H  Kono Y  Ikeda A  Ouchi T  Ueda K  Takahashi O  Higuchi I  Tamenori Y  Nagaoka S
Affiliation:Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan. suzukii@post.kek.jp
Abstract:Spectator resonant KL(23)L(23) Auger electron spectra have been measured in the Si 1s photoexcitation region of Si(CH(3))(4) using monochromatized undulator radiation combined with a hemispherical electron spectrometer. The broad peak with high intensity in a total ion yield spectrum, coming mainly from excitation of a 1s electron into the 6t(2) vacant orbital, induces a spectator Auger decay in which the excited electron remains in its excited orbital. The component on the higher energy side of this peak through 1s excitation into a Rydberg orbital produces resonant Auger decays in which the excited Rydberg electron moves into a slightly higher Rydberg orbital, or is partly shaken up to a significantly higher Rydberg orbital. These findings of Si(CH(3))(4) indicate a clear contrast to those for SiF(4), in which the 1s excitation into a Rydberg orbital induces a shake-down phenomenon as well as a shake-up one. The results of these molecules exhibit a clear splitting effect among excited orbitals which are smeared out by overlapping due to lifetime widths and due to densely populated levels in the 1s electron excitation spectrum. This is consistent with the calculation on photoexcitation within the framework of density functional theory.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号