首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Asymptotic Decay for Some Differential Systems with Fading Memory
Authors:Mauro Fabrizio  Sergio Polidoro
Institution:Dipartimento di Matematica , Università di Bologna , Piazza di Porta S. Donato 5, Bologna, 40127, Italy
Abstract:We study the large time behavior of the solution u to an initial and boundary value problem related to the following integro-differential equation $$ u_{tt} = G_0 \Delta u + \int_0^t G'(t-s) \Delta u(x, s)\, ds - a u_t \eqno(0.1) $$ where G 0 , a are real constant coefficients, G 0 > 0, a S 0 and $ G\,' \in L^1({{\shadR}}^ + ) \cap L^2({{\shadR}}^ + ), G\,' \le 0 $ . It is known that, when G ' L 0 and a > 0, the solution u of (0.1) exponentially decays. Here we prove that, for any nonnegative a and for any $ G ' \not \equiv 0 $ , the solution u of the Eq. (0.1) exponentially decays only if the relaxation kernel G ' does. In other words, the introduction of the dissipative term related to G ' does not allow the exponential decay due to the presence of the positive coefficient a . We also prove analogous results for the polynomial decay.
Keywords:Materials With Memory  Integro-partial Differential Equations  Exponential Asymptotic Stability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号