首页 | 本学科首页   官方微博 | 高级检索  
     


NONLINEAR DYNAMIC RESPONSE OF PRE-DEFORMED BLADE WITH VARIABLE ROTATIONAL SPEED UNDER 2:1 INTERNAL RESONANCE$^{bf 1)}$
Authors:Gu Wei  Zhang Bo  Ding Hu  Chen Liqun
Affiliation:School of Mechanics and Engineering Sciences, Shanghai University, Shanghai 200444, China;School of Science, Chang'an University, Xi'an 710064, China;Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200444, China;Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200444, China
Abstract:In the engineering practice, the rotating speed of turbine blade is not a constant value during many application scenarios, for example, during the start-up, the speed varying and the outage of engines, the input and output power of the rotor are out of balance, usually along with the generation of torsional vibration and resulting in velocity pulse. At the same time, the pre-deformation of the blades, caused by some factors including service environment and the installation imperfection, is often inevitable. Nonlinear dynamic behavior of pre-deformed blade with the varying rotating speed is studied in this paper. Considering the rotating speed is consisted of a constant speed and small perturbation, the dynamic governing equation is obtained by Lagrange principle. The partial differential equation is transformed into ordinary differential equation by using assumed mode method. For the sake of generality, a set of dimensionless parameters are introduced. The method of multiple scales is exploited to solve the excitation system. The average equation is derived in the case of 2:1 internal resonance. After that the steady-state response of the system is obtained. The influences of rotating speed, temperature gradient and damping on the dynamic behavior of the blade are studied in detail. Meanwhile, we clarify the effects of cubic nonlinear terms on the steady state response of the blade in the case of the 2:1 internal resonance. The original dynamic equation is integrated numerically in forward and backward frequency sweep direction to observe the jump phenomenon, and to verify the analytical solution. The results show that the changes of parameters have different influences on the dynamic behavior of blade. In the case of the 2:1 internal resonance, the cubic nonlinear terms have little influence on the dynamic response of the system. The analytical solutions are in good agreement with the numerical solutions.
Keywords:pre-deformed blade  variable speed  multiple scales method  internal response  parametric excited vibration  
点击此处可从《力学学报》浏览原始摘要信息
点击此处可从《力学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号