首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Clinical tests of large area thermoluminescent detectors under radiotherapy beams
Institution:1. SOD Fisica Medica, Azienda Ospedaliero-Universitaria Careggi-Largo Brambilla 3, 50134 Firenze, Italy;2. Department of Clinical Physiopathology, University of Florence, Viale Morgagni 8, 50134 Firenze, Italy;3. Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland;4. Centre Of Oncology Maria Skłodowska-Curie Memorial Institute, ul. Garncarska 11, 31-115 Kraków, Poland;1. Research Center Rez Ltd, 250 68 Husinec-Rez 130, Czech Republic;2. Czech Metrology Institute, Okruzni 31, 638 00 Brno, Czech Republic;1. Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo, Italy;2. Gruppo V Sezione INFN, Catania, Italy;3. Dipartimento Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, Ed. 6, I-90128 Palermo, Italy;4. Dipartimento di Chimica, Università di Pavia, V.le Taramelli, 12 Pavia, Italy and INFN, Sezione di Pavia, Pavia, Italy.;1. Radiation Laboratory, Institute of Industrial Ecology, UB RAS, Ekaterinburg, Russia;2. Department of Experimental Physics, Ural Federal University, Ekaterinburg, Russia;3. Institute of Electrophysics, UB RAS, Ekaterinburg, Russia;1. Dipartimento di Fisica e Chimica (DiFC), Università di Palermo, V.le delle Scienze, Ed.18, I-90128 Palermo, Italy;2. Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Catania, Via Santa Sofia, 64, I-95123 Catania, Italy;3. PH3DRA Laboratories (PHysics for Dating Diagnostic Dosimetry Research and Applications), Dipartimento di Fisica e Astronomia, Università di Catania Via Santa Sofia 64, I-95123 Catania, Italy;4. Dipartimento di Fisica, Università di Pavia, Via Agostino Bassi, 6, I-27100 Pavia, Italy;5. Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Agostino Bassi, 6, I-27100 Pavia, Italy;6. Dipartimento di Chimica, Università di Pavia, V.le Taramelli, 12, I-27100 Pavia, Italy;1. Chemical Sciences & Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, United States;2. Physics Department, South Dakota School of Mines & Technology, 501 E. Saint Joseph St., Rapid City, SD 57701, United States;3. Idaho Accelerator Center, Idaho State University, 921 S. 8th Ave., Pocatello, ID 83209, United States
Abstract:Two-dimensional (2D) thermoluminescence (TL) dosimetry systems based on LiF:Mg,Cu,P, together with the newly developed, based on CaSO4:Dy, were tested under radiotherapy beams. The detectors were irradiated in a water phantom with 6 MV X-ray beams from linac and read with a dedicated TLD reader. Dose distributions of differently shaped fields and of a full stereotactic plan were measured and compared with planned distributions.Maximum distance-to-agreement (DTA) in the penumbra region was 1 mm for both LiF:Mg,Cu,P and CaSO4:Dy TL sheets, for all the measured fields. Maximum percentage dose difference (DA%) between planned and measured dose value in low dose gradient regions was up to 11% for LiF:Mg,Cu,P TL sheets and 18% for CaSO4:Dy TL sheets. Concerning the full stereotactic plan, the percentage of points with γ-index below 1 is 54.9% for the LiF:Mg,Cu,P-based foil and 96.9% for the CaSO4:Dy TL sheets. Both 2D TL detector types can be considered to be a promising tool for bi-dimensional dose measurements in radiotherapy. Non-homogeneity, presumably due to the TL sheets manufacture, still affects dosimetric distribution and the agreement between planned and measured distributions may depend on the chosen sample.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号