首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polypyrrole/carbon supercapacitor electrode with remarkably enhanced high-temperature cycling stability by TiC nanoparticle inclusion
Institution:1. Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan, ROC;2. Taiwan Textile Research Institute, Tucheng District, New Taipei City 236, Taiwan, ROC
Abstract:In the potential applications for electric vehicle and stand-alone renewable energy storage, supercapacitors are likely to constantly operate at elevate temperatures, and yet the study on high-temperature cycling behavior of conducting polymer-containing supercapactors is scarce. Polypyrrole (PPy) film, doped with p-toluenesulfonate, has been coated onto activated carbon (AC) electrode preform. Although the specific capacitance of the electrode is doubled, from 176 F/g to 352 F/g, with coating of 17.7 wt.% PPy, the capacitance lost nearly 60% after 10,000 cycles at 40 °C, in contrast to 20% loss at 25 °C. It is demonstrated that the problem of accelerated fading at high temperature is effectively alleviated, in conjunction with significant (up to 50%) improvement in power performance, by embedding conductive TiC nanoparticles within the PPy layer via co-electroplating. With addition of 1.7 wt.% of TiC in the composite electrode, the capacitance retains 92% of its initial capacitance under the same cycling condition (40 °C, 10,000 cycles). The enhanced high-temperature cycling stability has in part been attributed to the reduction in the mismatch of thermal expansion coefficient between the conducting polymer layer and the AC substrate.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号