首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimal control based NCO and NCA experiments for spectral assignment in biological solid-state NMR spectroscopy
Authors:Kehlet Cindie  Bjerring Morten  Sivertsen Astrid C  Kristensen Torsten  Enghild Jan J  Glaser Steffen J  Khaneja Navin  Nielsen Niels Chr
Institution:Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Langelandsgade 140, DK-8000, Aarhus C, Denmark.
Abstract:We present novel pulse sequences for magic-angle-spinning solid-state NMR structural studies of (13)C,(15)N-isotope labeled proteins. The pulse sequences have been designed numerically using optimal control procedures and demonstrate superior performance relative to previous methods with respect to sensitivity, robustness to instrumental errors, and band-selective excitation profiles for typical biological solid-state NMR applications. Our study addresses specifically (15)N to (13)C coherence transfers being important elements in spectral assignment protocols for solid-state NMR structural characterization of uniformly (13)C,(15)N-labeled proteins. The pulse sequences are analyzed in detail and their robustness towards spin system and external experimental parameters are illustrated numerically for typical (15)N-(13)C spin systems under high-field solid-state NMR conditions. Experimentally the methods are demonstrated by 1D (15)N-->(13)C coherence transfer experiments, as well as 2D and 3D (15)N,(13)C and (15)N,(13)C,(13)C chemical shift correlation experiments on uniformly (13)C,(15)N-labeled ubiquitin.
Keywords:Optimal control based optimization  Dipolar recoupling  NCO  NCA  NCOCX  2D  3D assignment  Sample heating  Ubiquitin
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号