首页 | 本学科首页   官方微博 | 高级检索  
     检索      


EPR and ENDOR study of an oxygen-vacancy-associated Ti center in RbTiOPO4 crystals
Authors:Yongquan Jiang  LE Halliburton  M Roth  M Tseitlin  N Angert
Institution:

aDepartment of Physics, West Virginia University, Morgantown, WV 26506, USA

bDepartment of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

cThe Research Institute, College of Judea and Samaria, Ariel 44837, Israel

Abstract:The dominant Ti3+ trapped electron center in flux-grown RbTiOPO4 (RTP) crystals has been characterized using electron paramagnetic resonance (EPR) and electron–nuclear double resonance (ENDOR). This center is produced during an X-ray irradiation at room temperature when a Ti4+ ion traps an electron and becomes a Ti3+ ion, and is best studied in the 30–40 K range. The EPR spectrum contains a three-line hyperfine pattern from two nearly equivalent neighboring 31P nuclei, along with hyperfine lines from the 47Ti and 49Ti nuclei. The g matrix, determined from the angular dependence of the EPR spectrum, has principal values of 1.819, 1.889, and 1.947. Hyperfine matrices for four 31P nuclei are obtained from the angular dependence of the ENDOR spectrum. The proposed model for this defect is a Ti3+ ion adjacent to an oxygen vacancy at an OT position. Analogies are made to a similar Ti3+ center in KTiOPO4 (KTP) crystals.
Keywords:EPR  ENDOR  Point defects  Hyperfine  Nonlinear optical materials
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号