首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microstructures of high-growth-rate (up to 8.3 nm/s) microcrystalline silicon photovoltaic layers and their influence on the photovoltaic performance of thin-film solar cells
Authors:Y Sobajima  S Nakano  M Nishino  Y Tanaka  T Toyama  H Okamoto
Institution:1. Colorado Energy Research Institute, Colorado School of Mines, Golden, CO, USA;2. National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO, USA;3. Department of Physics and Astronomy, University of Toledo, Toledo, OH, USA;4. Department of Physics, Syracuse University, Syracuse, NY, USA
Abstract:Microstructures of microcrystalline silicon (μc-Si) deposited at a high-growth-rate have been investigated in order to apply to the photovoltaic i-layer. μc-Si films were prepared by very-high-frequency (100 MHz) plasma-enhanced chemical vapor deposition at 180 °C. High growth rates of 3.3–8.3 nm/s have been achieved utilizing high deposition pressures up to 24 Torr and large input powers. Applying μc-Si to n–i–p junction solar cells, as the optimum result in this experimental series, a conversion efficiency of 6.30% (JSC: 22.1 mA/cm2, VOC: 0.470 V, and FF: 60.7%) has been achieved employing the i-layer deposited at 8.1 nm/s. Raman scattering and X-ray diffraction measurements revealed the crystalline volume fraction of around 50% with the (2 2 0) crystallographic preferential orientation, respectively. The cross-sectional transmission electron microscope image shows densely columnar structure grown directly on the underlying n-layer. These structural features are basically in good agreement those of low-growth-rate μc-Si used for a high efficiency solar cell as previously reported, implying advantages of the use of high pressures with regard to providing the photovoltaic i-layers. Finally, the implication is discussed from the photovoltaic performance as a function of the crystalline volume fraction of i-layer, and current problems in improving the photovoltaic performance are extracted.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号