首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preparation of microcrystalline silicon solar cells on microcrystalline silicon carbide window layers grown with HWCVD at low temperature
Authors:Y Huang  T Chen  A Gordijn  A Dasgupta  F Finger  R Carius
Institution:1. IEF-5 Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany;2. State Key Lab of Silicon Material, Zhejiang University, 310027 Hangzhou, PR China;1. Colorado Energy Research Institute, Colorado School of Mines, Golden, CO, USA;2. National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO, USA;3. Department of Physics and Astronomy, University of Toledo, Toledo, OH, USA;4. Department of Physics, Syracuse University, Syracuse, NY, USA
Abstract:N-type microcrystalline silicon carbide layers prepared by hot-wire chemical vapor deposition were used as window layers for microcrystalline silicon n–i–p solar cells. The microcrystalline silicon intrinsic and p-layers of the solar cells were prepared with plasma-enhanced chemical vapor deposition at a very high frequency. Amorphous silicon incubation layers were observed at the initial stages of the growth of the microcrystalline silicon intrinsic layer under conditions close to the transition from microcrystalline to amorphous silicon growth. ‘Seed layers’ were developed to improve the nucleation and growth of microcrystalline silicon on the microcrystalline silicon carbide layers. Raman scattering measurement demonstrates that an incorporation of a ‘seed layer’ can drastically increase the crystalline volume fraction of the total absorber layer. Accordingly, the solar cell performance is improved. The correlation between the cell performance and the structural property of the absorber layer is discussed. By optimizing the deposition process, a high short-circuit current density of 26.7 mA/cm2 was achieved with an absorber layer thickness of 1 μm, which led to a cell efficiency of 9.2%.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号