Abstract: | A compact wavefront camera that allows users to quantitatively measure the intensity and wavefront at a remote object plane is reported. The camera is built from a chip-scale wavefront sensor that we previously developed. By measuring the wavefront of the image and calibrating the wavefront relationship between the image and object planes, the wavefront at the object plane can be computed and the surface normal of the object can be derived. We built a prototype camera and calibrated the wavefront relationship. In a proof-of-concept experiment, a set of concave mirrors with different focal lengths (50-200 mm), were imaged. The results agree well with their expected values. To demonstrate the application of the camera, we applied this method to measure the deformation of a microfluidic channel under pressure. |