首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluctuating hydrodynamics for multiscale modeling and simulation: Energy and heat transfer in molecular fluids
Authors:Barry Z Shang  Nikolaos K Voulgarakis  Jhih-Wei Chu
Institution:Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, USA.
Abstract:This work illustrates that fluctuating hydrodynamics (FHD) simulations can be used to capture the thermodynamic and hydrodynamic responses of molecular fluids at the nanoscale, including those associated with energy and heat transfer. Using all-atom molecular dynamics (MD) trajectories as the reference data, the atomistic coordinates of each snapshot are mapped onto mass, momentum, and energy density fields on Eulerian grids to generate a corresponding field trajectory. The molecular length-scale associated with finite molecule size is explicitly imposed during this coarse-graining by requiring that the variances of density fields scale inversely with the grid volume. From the fluctuations of field variables, the response functions and transport coefficients encoded in the all-atom MD trajectory are computed. By using the extracted fluid properties in FHD simulations, we show that the fluctuations and relaxation of hydrodynamic fields quantitatively match with those observed in the reference all-atom MD trajectory, hence establishing compatibility between the atomistic and field representations. We also show that inclusion of energy transfer in the FHD equations can more accurately capture the thermodynamic and hydrodynamic responses of molecular fluids. The results indicate that the proposed MD-to-FHD mapping with explicit consideration of finite molecule size provides a robust framework for coarse-graining the solution phase of complex molecular systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号