首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonlinear dynamics of complex hysteretic systems: Oscillator in a magnetic field
Authors:G Radons  A Zienert
Institution:1. Institute of Physics, Complex Systems and Nonlinear Dynamics, Chemnitz University of Technology, 09107, Chemnitz, Germany
2. Institute for Mechatronics, 09126, Chemnitz, Germany
3. Center for Microtechnologies, Chemnitz University of Technology, 09126, Chemnitz, Germany
Abstract:Complex hysteresis is a well-known phenomenon in many branches of science. The most prominent examples come from materials with a complex microscopic structure such as magnetic materials, shape-memory alloys, or, porous materials. Their hysteretic behavior is characterized by the existence of multiple internal system states for a given external parameter and by a non-local memory. The input-output behavior of such systems is well studied and in a standard phenomenological approach described by the so-called Preisach operator. What is not well understood, are situations, where such a hysteretic system is dynamically coupled to its environment. Since the hysteretic sub-system provides a complicated form of nonlinearity, one expects non-trivial, possibly chaotic behavior of the combined dynamical system. We study such a combined dynamical system with hysteretic nonlinearity. In this original contribution a simple differential-operator equation with hysteretic damping, which describes a magnetic pendulum is considered. We find, for instance, a fractal dependence of the asymptotic behavior as function of the starting values. The sensitivity of the system to perturbations is investigated by several methods, such as the 0–1 test for chaos and sub-Lyapunov exponents. The power spectral density is also calculated and compared with analytical results for simple input-output scenarios.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号