首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Templation of the excited-state chemistry of alpha-(n-alkyl) dibenzyl ketones: how guest packing within a nanoscale supramolecular capsule influences photochemistry
Authors:Gibb Corinne L D  Sundaresan Arun Kumar  Ramamurthy V  Gibb Bruce C
Institution:Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148, USA.
Abstract:Excited-state behavior of eight alpha-alkyl dibenzyl ketones (alkyl = CH3 through n-C8H17) that are capable of undergoing type II and/or type I photoreactions has been explored in isotropic solution and within a water-soluble capsule. The study consisted of two parts: photochemistry that explored the excited-state chemistry and an NMR analysis that revealed the packing of each guest within the capsule. The NMR data (COSY, NOESY, and TOCSY experiments) revealed that ternary complexes between alpha-alkyl dibenzyl ketones and the capsule formed by two cavitands are kinetically stable, and the guests fall into three packing motifs modulated by the length of the alpha-alkyl chain. In essence, the host is acting as an external template to promote the formation of distinct guest conformers. The major products from all eight guests upon irradiation either in hexane or in buffer solution resulted from the well-known Norrish type I reaction. However, within the capsule the excited-state chemistry of the eight ketones was dependent on the alkyl chain length. The first group consisted of alpha-hexyl, alpha-heptyl, and alpha-octyl dibenzyl ketones that yielded large amounts of Norrish type II products within the host, while in solution the major products were from Norrish type I reaction. The second group consists of alpha-butyl and alpha-pentyl dibenzyl ketones that yield equimolar amounts of two rearranged starting ketones within the capsule (combined yield of ca 60%), while in solution no such products were formed. The third group consisted of alpha-methyl, alpha-ethyl, and alpha-propyl dibenzyl ketones that within the capsule yielded only one (not two) rearranged starting ketone in larger amounts (21-35%) while in solution no rearrangement product was obtained. Variation in the photochemistry of the guest within the capsule, with respect to the alpha-alkyl chain length of the guest, highlights the importance of how a small variation in supramolecular structure can influence the selectivity within a confined nanoscale reactor.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号