首页 | 本学科首页   官方微博 | 高级检索  
     


Mass spectrometric characterization of beta-caryophyllene ozonolysis products in the aerosol studied using an electrospray triple quadrupole and time-of-flight analyzer hybrid system and density functional theory
Authors:Kanawati Basem  Herrmann Frank  Joniec Seweryn  Winterhalter Richard  Moortgat Geert K
Affiliation:Atmospheric Chemistry Division, Max-Planck Institute for Chemistry, Mainz, Germany. kanawati@t-online.de
Abstract:The components of the organic aerosol formed due to gas-phase beta-caryophyllene ozonolysis were characterized by the use of a triple quadrupole and time-of-flight analyzer hybrid system coupled to an electrospray ionization source operated in the negative ion mode. A reversed-phase high-performance liquid chromatography (HPLC) column was used to achieve chromatographic separations at neutral pH which has been proved to induce ionization of organic compounds bearing aldehyde moieties. In addition to the detected oxo- and dicarboxylic acids, isomeric oxidation products, which bear multi-functional groups such as aldehyde, carbonyl and hydroxyl groups, could be differentiated by examining their corresponding collision-induced dissociation (CID) fragmentation pathways. Proposed fragmentation mechanisms were drawn for the experimentally observed fragmentation pathways in all the CID experiments. Cyclic oxidation products could also be discerned and their fragmentation behaviour under low energy collisional conditions was studied in detail. Gas-phase deprotonation potentials were calculated by the use of DFT B3LYP/6-311+G(2d,p)//B3LYP/6-31+G(d) + ZPVE to estimate the most thermodynamically favourable deprotonation site for efficient negative ion formation in the ion source. The optimized gas-phase geometries for the most prominent oxidation products reveal a strong intramolecular interaction between the upper and lower C4 carbon chains, which are formed after the decomposition of the primary ozonide generated by ozone attack of the reactive endocyclic C==C bond.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号