首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Automatic Regularization by Quantization in Reducible Representations of CCR: Point-Form Quantum Optics with Classical Sources
Authors:Marek Czachor and Klaudia Wrzask
Institution:(1) Katedra Fizyki Teoretycznej i Informatyki Kwantowej, Politechnika Gdańska, 80-952 Gdańsk, Poland;(2) Centrum Leo Apostel (CLEA), Vrije Universiteit Brussel, 1050 Brussels, Belgium
Abstract:Electromagnetic fields are quantized in a manifestly covariant way by means of a class of reducible “center-of-mass N-representations” of the algebra of canonical commutation relations (CCR). The four-potential A a (x) transforms in these representations as a Hermitian four-vector field in Minkowski four-position space (without change of gauge), but in momentum space it splits into spin-1 massless photons and two massless scalars. What we call quantum optics is the spin-1 sector of the theory. The scalar fields have physical status similar to that of dark matter (spin-1 and spin-0 particle numbers are separately conserved). There are no negative-norm or zero-norm states. Unitary dynamics is given by the point-form interaction picture, with minimal-coupling Hamiltonian constructed from fields that are free on the null-cone boundary of the Milne universe. SL(2,C) transformations as well as the dynamics are represented unitarily in the Hilbert space corresponding to N four-dimensional oscillators. Vacuum is a Bose-Einstein condensate of the N-oscillator gas and is given by any N-oscillator product state annihilated by all annihilation operators. The form of A a (x) is determined by an analogue of the twistor equation. The same equation guarantees that the set of vacuum states is Poincaré invariant. The formalism is tested on quantum fields produced by pointlike classical sources. Photon statistics is well defined even for pointlike charges, with ultraviolet and infrared regularizations occurring automatically as a consequence of the formalism. The probabilities are not Poissonian but of a Rényi type with α=1−1/N; the Shannon limit N→∞ is an ultraviolet/infrared-regularized Poisson distribution. The average number of photons occurring in Bremsstrahlung splits into two parts: The one due to acceleration, and the one that remains nonvanishing even for inertially moving charges. Classical Maxwell electrodynamics is reconstructed from coherent-state averaged solutions of Heisenberg equations. We show in particular that static pointlike charges polarize vacuum and produce effective charge densities and fields whose form is sensitive to both the choice of representation of CCR and the corresponding vacuum state.
Keywords:Field quantization  Point-form dynamics  Oscillator algebras  Renyi entropies  Infrared regularization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号